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Abstract
We analyse the relaxational dynamics of a system close to a saddle of the
potential energy function, within an harmonic approximation. Our main aim is
to relate the topological properties of the saddle, as encoded in its spectrum, to
the dynamical behaviour of the system. In the context of the potential energy
landscape approach, this represents a first formal step to investigate the belief
that the dynamical slowing down at Tc is related to the vanishing of the number
of negative modes found at the typical saddle point. In our analysis we keep the
description as general as possible, using the spectrum of the saddle as an input.
We prove the existence of a timescale tε , which is uniquely determined by the
spectrum, but is not simply related to the fraction of negative eigenvalues. The
mean square displacement develops a plateau of length tε , such that a two-step
relaxation is obtained if tε diverges at Tc. We analyse different spectral shapes
and outline the conditions under which the mean square displacement exhibits
a dynamical scaling identical to the β-relaxation regime of mode coupling
theory, with a power-law approach to the plateau and power-law divergence of
tε at Tc.

PACS number: 64.70.Pf

1. Introduction

In recent years much attention has been devoted in the field of glass-forming liquids to the
so-called ‘energy landscape’ paradigm. The main background of this approach is the existence
of a strong relation between the topological properties of the potential energy landscape (i.e.
the potential energy as a function of the system’s coordinates) and the dynamical behaviour
of the system.

Historically this idea goes back to Goldstein [1], who, in 1969, argued how at low enough
temperatures supercooled liquids spend a long time in local minima of the potential energy,
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with rare activated jumps among minima [2–4]. According to Goldstein this low-T description
breaks down at a temperature Tc above which activation is no longer the main mechanism of
diffusion. This temperature Tc has been subsequently identified with the critical temperature
where idealized mode coupling theory (MCT) locates a divergence of the relaxation time
[5–7], supporting the view that Tc marks a crossover from a low-T activated hopping dynamics,
to a continuous flow dynamics at higher T, which is well described by MCT [8–12].

According to this interpretation, from a topological point of view, it is clear that at low
temperature the crucial role is played by the minima of the potential energy function, since
the system spends most of the time close to them. This observation can be translated in
quantitative terms and various approaches have been elaborated to use information available
on the minima and their structure, to compute (thermo)dynamical quantities [2, 13, 14, 17].

On the other hand, above Tc the system is no longer confined around a minimum, but
rather ‘flows’ in configuration space. From a topological point of view one may imagine that
the system explores regions of the configuration space which are rich in negative modes. A
confirmation of this perspective comes from the instantaneous normal modes (INM) approach
[13, 14]: the INM spectrum, i.e. the average density of states of the Hessian matrix of
the potential energy, displays above Tc a finite fraction of imaginary modes, indicating that
the system at equilibrium explores regions of the landscape which have negative curvature
[15–17]. There have been various attempts to use the INM analysis to identify diffusive modes
[18–22], but it still remains unclear under what conditions this can be done, and how far the
procedure can be pushed.

From a theoretical point of view, a crucial question is whether also above Tc the behaviour
of the system can be characterized by well-defined topological entities, as happens at low
temperature with minima. This point has been addressed in detail in mean-field disordered
systems in the context of spin glasses [24–29], as well as in finite-dimensional ordered models
[30]. Given the numerous analogies between the phenomenology of certain spin-glass models
and that of structural glasses [31], and exploiting the results achieved in that field, a new
topological interpretation of the dynamics above Tc has been developed by various authors.
Within this scenario, above Tc it is still possible to describe the behaviour of the system in
terms of well-defined topological entities. These are not minima, but rather saddle points of
the potential energy function, that is stationary points with a non-zero fraction of unstable
directions. More precisely, we can summarize this ‘saddles interpretation’ in a few main
points:

• For T > Tc at equilibrium the system is ‘close’ to a saddle point. The typical topological
properties of this saddle point, for example its energy E and the number of unstable
directions K, depend on the temperature T.

• Since K �= 0 the system explores a region where negative (non-confining) modes are
available. Diffusion can then in principle occur in two different ways: either via barrier
hopping along the positive eigenvalues, or exploiting the presence of these free directions
(see [34] for a discussion of this point). When K(T ) is large this second mechanism
will be faster than the first one, and will reasonably prevail. However, upon lowering the
temperature K(T ) decreases and it will become less and less efficient.

• As the temperature approaches Tc the typical saddles become less unstable, and at Tc they
finally cease to have negative modes and turn into minima. Thus, as T → Tc the system
finds fewer and fewer free directions in which to diffuse and the second mechanism of
diffusion previously described will freeze. If barriers at Tc are relevant, as numerical
simulations indicate for fragile systems [33], this implies a dramatic increase of the
relaxation time and a slowing down of the dynamics as Tc is approached. Around Tc a
crossover occurs to a different regime where, negative modes being extremely rare, the
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main mechanism of diffusion becomes barrier crossing and the Goldstein scenario is thus
recovered [34].

This scenario has been tested in different ways and up to now various indications in
its favour have been gathered. Numerical experiments on glass forming fragile models
[32, 33, 35–40] have shown that it is possible to identify relevant saddles at a given temperature
T and classify them through their index K(T ). Also, and more importantly, K(T ) → 0 as
T → Tc, Tc being the mode coupling temperature. Besides, analytical computations in
simple models [45] show that the system at equilibrium is truly close to a saddle according
to a rigorous well-defined notion of distance in the configuration space. As in numerical
experiments, the index of the closest saddle goes to zero as the critical temperature is
approached.

Despite these encouraging results the saddle scenario is not immune to some criticisms.
The results of numerical simulations [32, 33, 35] highly rely on numerical algorithms to
locate the saddles, and the sampling procedure has been deeply questioned (see for example
[39]). Also the whole energy landscape approach, even if supported by a great part of the
community, has recently received many objections (see for example [41] where a description
of the supercooled behaviour in terms of heterogeneities is preferred). Besides, the saddle
scenario still remains from a theoretical point of view rather vague and incomplete. In
particular, there are several questions which should be addressed, in our opinion, in a more
formal and quantitative way:

(i) From an intuitive point of view and in the light of the numerical results, it is reasonable that
saddles do play a crucial role in the dynamical behaviour of the system above Tc. However,
is this just a useful qualitative interpretation, or can we push this approach further? In
other words, is it possible to cast the ‘saddle dynamics’ into a formal description?

(ii) What is the precise relation between the vanishing of negative modes and the increase
of the relaxation time as T → Tc? In particular, what is the link between K(T ) and the
relaxation time τ?

(iii) Is K(T ) really the topological quantity most relevant to the dynamics?
(iv) Is a saddle description compatible with mode coupling theory?

In this paper we will address these questions in a formal way by considering a very
simple model of harmonic relaxation in a saddle. In our analysis we only assume as starting
hypotheses two facts which have been numerically or analytically tested up to now: (1) the
system above Tc is close to a saddle point with non-zero index K(T ), and (2) the number of
negative modes of this saddle goes to zero as T → Tc. The first assumption will enable us
to perform an harmonic expansion of the potential energy around a saddle point, while the
second will be used as a constraint on the behaviour of the saddle spectrum close to Tc.

Our aim is to find an explicit and quantitative link between the topological properties of
the energy landscape and the dynamical behaviour of the system. The input of our model is
then the spectrum of the saddle, while our results concern the relation between this spectrum
and the relaxation time of the system. We will leave the shape of this spectrum unspecified as
long as we can (apart from the above-mentioned constraints) in order to make our statements
as general as possible. Only after will we discuss specific cases and their physical relevance.
We will then show how even a simple relaxational dynamics is able to provide precise answers
to the previous questions, and in certain cases, even approximately reproduce the results of
more complicated dynamical theories such as mode coupling.

The paper is organized in the following way. In section 2 we introduce our model and
the main quantity to be considered, namely the mean square distance (MSD) (in configuration
space) of the system from the typical reference saddle point at temperature T = (1 + ε)Tc.
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The MSD will be expressed in terms of the topological properties of the saddle, more precisely
its spectrum. In section 3 we use the Laplace method to find a relation between the asymptotic
dynamical behaviour of the MSD and the spectrum of the saddle point. In section 4 we analyse
the consequences of our result, and discuss how the shape of the spectrum may determine
qualitatively and quantitatively the long-time dynamics. We look at different classes of spectra
and focus on the conditions under which a two-step relaxation with a diverging timescale is
obtained. In section 5 we compare our results with the prediction of mode coupling theory.
Section 6 is devoted to our conclusions.

2. The harmonic saddle model

Let us consider a glass forming system with N particles and potential energy V (r), where
r = {ri} is the (mass-weighted) vector of the particle positions and i = 1, . . . , N is a particle
index4. As explained in the introduction, the stationary points of V are, from a topological
point of view, the quantities of interest to describe the behaviour of the system.

At equilibrium in the low-temperature phase T < Tc, the system (i.e. its representative
point r

¯
) explores for most of the time a region close to a minimum of V , only occasionally

jumping via barrier crossing into the basin of another minimum. This separation of timescales
between intra and inter basin motion has been exploited by both the INM and the inherent
structure [2] approaches to compute dynamic (velocity autocorrelation) and thermodynamic
quantities (equilibrium energy, entropy, etc) via a harmonic expansion of the potential energy
around a reference configuration. On the other hand, above Tc the system is typically close to a
stationary point which is not a minimum, but a saddle with a certain number of negative modes.
One can wonder whether also in this case it is possible to use this information to simplify
the computations with a reasonable approximation, such as the harmonic one adopted in the
low-temperature phase. If the relevant saddles have a large instability index K(T ), the system
very easily finds escape directions to flow from one region of the phase to another one: even
if the closest stationary point will typically be a saddle with the same statistical properties
(index, energy, etc), it will not be the same saddle even for relatively short times. However, we
know from the numerical and analytical works quoted in the introduction that when T → Tc,
K(T ) → 0, thus close enough to Tc the relevant saddles have a very small instability index.
Then, if at some time the system is close to a given saddle it will take a long time before finding
one of the few available escape directions and flowing away. In this case the system remains
close to the same saddle (we could say in its ‘basin’) for some time, and a harmonic expansion
seems justified, at least on timescales shorter than the time when the saddle is definitely
left.

Given that, we shall now consider our system at a temperature T = (1 + ε)Tc where ε is a
small parameter, and assume that at time t = 0 it is close to a saddle point whose coordinates
are r0 in configuration space. We wish to examine the dynamical behaviour of the system
and to do that we resort to a simplified treatment where we use a harmonic expansion of the
potential V around r0. Our starting point is then the following Langevin equation:

ẋi = −
N∑

k=1

Mikxk + ξi(t) (1)

4 The particle position ri is still a vector in three dimensions, i.e. xi = {xa
i } with a = 1, . . . , 3; however we will

indicate it with a roman variable in order to keep the notation simple.
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where xi(t) = ri(t) − r0
i are the displacements from the saddle, the matrix Mik is the

second derivative of the potential V at the saddle point and ξ is a δ-correlated noise,
〈ξi(t)ξk(t

′)〉 = 2T δikδ(t − t ′).5

This equation has formally a very simple form of the Ornstein–Ulhenbeck type in 3N

dimensions. Of course, it is not as trivial as it may seem at first sight in that the matrix Mik

is not known. This is not only a consequence of having left the potential V unspecified,
since even when an explicit energy function is assumed, still the exact position r0 of a
typical saddle at temperature T is not determinable. This is the glassy nature of the system
we are considering: even if the Hamiltonian is deterministic, as the temperature is lowered
particles tend to arrange in disordered configurations. Thus Mik has rather to be considered a
disordered matrix whose distribution is determined in a complicated way by the equilibrium
Boltzmann measure (see e.g. [44, 45]). Thus in the following the Hessian matrix M will
be treated as a random variable whose statistical properties are in principle accessible. In
particular, we will express the dynamics in terms of the density of eigenvalues (spectrum)
of M:

ρ(λ; r0) = 1

3
N

∑
α

δ(λ − λα) (2)

where λα are the eigenvalues of Mik . Of course, ρ(λ; r0) also depends on the precise saddle
where it is evaluated, and it is thus a stochastic quantity, as is the Hessian. However, its
statistical properties are in general more easily computed via numerical simulations [32, 35]
or analytical procedures [46, 47, 50] and we have more information on its typical behaviour.
For example, we know from previous works that the instability degree of a typical saddle
decreases as the critical temperature is approached, which means that the spectrum evaluated
in a typical saddle has fewer and fewer negative modes. Consequently, we will assume that
the average spectrum ρ(λ) depends parametrically on ε ≡ (T − Tc)/Tc, and that its negative
support vanishes for T → Tc, i.e.

ρε(0) → 0 for ε → 0. (3)

From equation (1) we can easily compute the mean square displacement (MSD),

d2(t) ≡ 1

3N

N∑
i=1

3∑
a=1

〈
xa

i (t)2
〉 = T

3N

3N∑
α=1

1 − e−2λαt

λα

= T

∫ +∞

−∞
dλ ρε(λ)

1 − e−2λt

λ
(4)

where we have only assumed that in the thermodynamic limit fluctuations of the spectrum
around its average value are negligible (as indicated by numerical simulations), and we have
therefore substituted ρ(λ; r0) with ρε(λ). Also, we have considered as initial conditions
xi(0) = 0, that is we have assumed the system to start exactly on the top of the saddle. As
we shall see, the initial condition is not important as long as the system does not start too far
from the saddle (in section 3 we will say exactly how far). Indeed, the additional term arising
in equation (4) when xi(0) �= 0 can be shown in this case to be exponentially small at large
times.

This equation is the starting point of our analysis. All the physics is clearly encoded in
the behaviour of the spectrum, both in its shape as a function of λ and in its dependence on
the temperature. We immediately see that if ρε(λ) has some negative support the integral
will diverge for t → ∞, meaning that the system asymptotically leaves the saddle if there
are some negative eigenvalues, as expected. As already said, since we want our harmonic
approximation to be reasonable, we are working in the regime ε � 1, when the support
of ρε(λ) is almost entirely positive. In this case the systems remain a long time close to
5 We assume that the system is at the top of the saddle at t = 0, i.e. xi(0) = 0 ∀i. This will be justified later.
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the saddle and we can study what happens in the large time limit, but before the saddle
is left.

3. The asymptotic dynamics

For mathematical convenience it is better to look at the time derivative of d2(t, ε),

ḋ2(t, ε) = 2T

∫ +∞

−∞
dλ ρε(λ) e−2λt . (5)

Since the MSD is a well-defined physical quantity at any given time t, this integral should
converge for any value of t. Convergence for λ → −∞ requires that

log ρε(λ) < 2λt for λ → −∞. (6)

If we exclude oscillating functions this implies a concavity condition on ρ(λ) (this is obvious
graphically): a λ0(ε) must exist such that

d2

dλ2
log ρε(λ) < 0 for λ < λ0(ε). (7)

The support of the spectrum must be entirely positive for ε = 0, and this implies that λ0(ε) > 0
for ε small enough. We can split the integral in (5) separating the domains λ < λ0 and λ > λ0.
We have

R ≡ 2T

∫ +∞

λ0

dλ ρε(λ) e−2λt � ρmax
e−2λ0t

t
(8)

where ρmax is the maximum of ρε(λ). As we shall see, the remaining part of the integral in
ḋ2(t, ε) is much larger than R for t 
 1. We can thus disregard R and write

ḋ2(t, ε) = 2T

∫ λ0

−∞
dλ ρε(λ) exp(−2λt) = 2T

∫ λ0

−∞
dλ exp(−tSε(λ, t))

with Sε(λ, t) = 2λ − log ρε(λ)/t . Thus, only the left tail of the spectrum contributes to the
behaviour of ḋ2(t, ε).

To evaluate this integral in the regime t 
 1 we can use the Laplace (saddle-point) method
[48] to find

ḋ2(t, ε) = d0T
exp(−tSε(λ̂ε(t), t))√

tS ′′
ε (λ̂ε(t), t)

(9)

where d0 is a constant independent of t and ε, the prime indicates the derivative with respect
to λ and λ̂ε(t) is the solution of the saddle-point equation S ′

ε(λ̂ε, t) = 0, namely

ρ ′
ε(λ̂ε)

ρε(λ̂ε)
= 2t. (10)

From the convergence condition (7) we see that ρ ′
ε(λ)/ρε(λ) is a monotonically decreasing

function of λ, and therefore equation (10) has a unique solution λ̂ε(t). Besides, we see that
λ̂ε(t) changes sign at a well-defined time: if we define

tε = 1

2

ρ ′
ε(0)

ρε(0)
(11)

we have that

λ̂ε(t) > 0 for t < tε (12)

λ̂ε(t) < 0 for t > tε. (13)
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If we interpret the saddle value λ̂(t) as the relevant mode at time t, this result translates the
intuitive fact that while at short times the system does not realize the presence of escape
directions and ‘relaxes’ in the pseudo-basin around the saddle given by the positive modes,
as time increases it finally finds the unstable modes and exploits them to flow away. This
argument already tells us that tε represents a crucial dynamical timescale in our problem. This
can be appreciated in a more explicit and quantitative way if we analyse in detail the behaviour
of ḋ2(t, ε).

As we show in appendix A, it is possible to rewrite (9) as

ḋ2(t, ε) = D0T

√
− ˙̂λε(t) exp

(
−2

∫ t

1
dt ′ λ̂ε(t

′)
)

(14)

where D0 is a constant. This equation shows that the sign of λ̂ε(t) is the key factor determining
the asymptotic behaviour of ḋ2(t, ε) and thus, depending on the value of t compared to tε , we
find two time regimes:

• Early time region (1 � t < tε). In this regime λ̂ε(t) > 0 and thus ḋ2(t, ε) is a decreasing
function of t, reaching its minimum at t = tε . From (14) we see that ḋ2(tε, ε) → 0
for tε → ∞. This means that if the timescale tε diverges at Tc, then d2(t, ε) develops a
plateau, whose length is of order tε .

6 The value of d2 at the plateau is given by

dp(ε) = T

∫ ∞

1/tε

dλ

λ
ρε(λ). (15)

The demonstration of this expression is sketched in appendix B. Physically, it is rather
intuitive from equation (4) if one remembers that at t = tε only positive modes contribute,
and makes the additional approximation that those with λ > 1/tε have reached their
asymptotic value, while the rest do not contribute at all. Since the length of the plateau is
proportional to tε , it is clear that the plateau itself is better defined the closer we are to Tc.
Note also that for large tε , the expression for the plateau is just the value of d2(t, ε) which
would be obtained for a strictly positive spectrum by taking the limit t → ∞ in (4). This
means that for 1 � t < tε the system ‘thermalizes’ in the saddle using only the positive
eigenvalues, and d2 reaches the value it would have reached in a purely harmonic well.
This justifies our initial condition xi(0) = 0: any other choice with d2(t, ε) � dp would
have been the same. The average energy density is given by E(t) = E0 + 1

2T [1−ḋ2(t, ε)],
where E0 is the bare energy of the saddle. Therefore, at the plateau, that is for t ∼ tε , the
corrections to the harmonic thermal energy T/2 are small if tε 
 1.

• Late time region (t 
 tε). In this regime we have that λ̂ε(t) < 0. Now the system has
finally found the unstable directions and its dynamics is ruled by the escape from the
saddle basin. The integral in the exponential of (14) changes sign at a time τ defined
by

∫ τ

1 dt ′ λ̂ε(t
′) = 0. Besides, in appendix C we show that the prefactor in the square

root does not go to zero exponentially for t → ∞. Thus, ḋ2(t, ε) → ∞ for t 
 τ ,
corresponding to d2(t, ε) leaving the plateau, i.e. to the system leaving the saddle. We
could in principle identify τ as an ‘escape’ time and consider it as a second relevant
dynamical timescale. However, as we have stressed in the introduction, our harmonic
expansion is meaningful as long as the system remains close to the saddle, therefore it is
not clear whether τ has a genuine physical meaning or whether other terms in the potential
expansion should already be considered on these timescales.

We stress that these results are valid for a general ρε(λ), with minimal requirements on
its behaviour dictated by physical consistency. To summarize, the most important result is
6 For a numerical study of the plateau developed by the MSD in LJ systems close to Tc, see [43].
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the existence of a relevant timescale tε , directly expressed in terms of topological properties
of the landscape (the spectrum at the saddle point). This result answers one of the questions
discussed in the introduction, namely the relation between a topology and a relaxation time.
Contrary to the naive expectation, the relaxation time tε is not naturally related to the fraction
of negative eigenvalues kε = ∫ 0

−∞ ρε(λ) dλ. Rather, if there is a degree of universality in
saddle dynamics, the correct scaling variable seems to be ρ ′

ε(0)/ρε(0) (see equation (11)).
A second general result is that the MSD exhibits a two-step relaxation close to the critical
temperature, provided the relevant timescale tε diverges at Tc. Given the expression for tε and
given that ρε(0) → 0 for ε → 0, it is likely that this is actually the most general scenario for
most reasonable spectra shapes (even if there are simple counter-examples, such as the case
ρε(λ) = εf (λ)).

On the other hand, the way the system approaches and leaves the plateau, which is encoded
in expression (14), depends on the specific form of ρε(λ). Therefore, to extend our analysis
further we need at this point to specify the spectrum in some detail. Thus in the next section
we shall consider different spectral shapes.

4. Specific spectra

Let us now consider some specific forms for the spectrum ρ(λ) and compute explicitly the
behaviour of d2(t). Since we are interested in the asymptotic behaviour we shall specify the
spectrum only in the left tail, that is for λ < λ0.

4.1. Exponential case

Let us consider

ρε(λ) ∼ ρε(0) exp(aλ) (16)

where limε→0 ρε(0) = 0 in order to ensure a positive definite spectrum at Tc. This spectrum
is of the form ρε(λ) = εf (λ) and, as noted in the previous section, it has a non-diverging
timescale tε = a/2. Besides, from expression (4) we see that d2(t) diverges at a finite time
t = tε . Equation (5) can be easily integrated and we get

ḋ2(t, ε) ∼ 2Tρε(0) erfc(λ0(a − 2t)) + R. (17)

Therefore in this case we do not get any diverging timescale as a function of ε nor a two-step
dynamics. Rather what happens is that d2(t, ε) diverges at the same time for any temperature
above Tc, but in a steeper and steeper way as Tc is approached.

4.2. The Gaussian case

The Gaussian tail is less trivial. In this case we consider

ρε(λ) ∼ exp

(
−b

2
(λ − λ̄ε)

2

)
(18)

with limε→0 λ̄−1
ε = 0. By applying the Laplace method we find λ̂ε(t) = λ̄ε − 2t/b and

tε = bλ̄ε/2. Then ḋ2 is given by

ḋ2(t, ε) ∼ D0T exp

[
2t2

b
− 2λ̄ε t

]
(19)

and

d2(t, ε) ∼ dp(ε) + D0T exp(λ̄εtε)

∫ t−tε

0
exp

(
2τ 2

b

)
dτ. (20)
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(The same expressions can of course be obtained by exactly solving the Gaussian integral
equation (5).) Therefore for a Gaussian tail we get a two-step dynamics with a plateau and a
diverging timescale. The plateau is approached exponentially, as we see from equation (20).

4.3. The power-law case

This is actually the most interesting case, since it gives predictions compatible with MCT.
Besides, the p-spin spherical model which has been widely used as a mean-field description
of glassy physics and exactly obeys MCT equations, has a spectrum belonging to this class
(see section 5.3).

Let us consider

ρε(λ) = (εµ + λ)η (21)

with µη > 0, such that ρε(0) = εµη → 0, for ε → 0. From equation (10) we have
λ̂ε(t) = −εµ + η/2t , while equation (14) gives

ḋ2(t, ε) = D0T
exp(2εµt)

tη+1
. (22)

By integrating from tε (given by (11)) up to t, we find

d2(t, ε) = dp(ε) + εµηh(t/tε) tε = η

2
ε−µ (23)

where h(x) is a scaling function obtained by the expansion of the exponential in (22). The
approach to the plateau can be found by noting that for x � 1 we have h(x) ∼ −1/xη, and
thus

d2(t, ε) − dp(ε) ∼ −t−η. (24)

These three general shapes of the spectrum give rise to different dynamical behaviour.
In particular, only a power spectrum gives rise to a diverging timescale and a power-law
approach to the plateau. This fact is particularly important when comparing the predictions of
this simple model with those of the MCT, as we shall do in the next section.

To conclude, we note that a useful quantity to characterize the approach to the plateau is
the time-dependent effective exponent [49],

νeff(t, ε) = 1 +
d log ḋ2(t, ε)

d log t
= 1 +

t

2

¨̂λε(t)

˙̂λε(t)
− 2t λ̂ε(t).

If in some time regime the MSD has a power-law dependence on time, d2(t, ε) = dp ± tν , this
must show up as a constant contribution to the effective exponent in some extended region of
time, that is νeff(t) = ν. If we apply this definition to the previous cases, we see easily that
the only one exhibiting a constant region for νeff(t) is the third one (see figure 1), for which
we find νeff(t) = −η(1 − t/tε).

5. Comparison with MCT

Mode coupling theory (MCT) [5–7] is a dynamical approach which has been widely tested
on a wide range of glass forming systems. It is not an exact theory, in that it makes some
assumptions on the memory functions entering the exact dynamical equations, but it deals with
the complete dynamics of the system and takes into account in detail its structural properties.
For structural fragile glasses it is now commonly accepted that MCT represents an excellent
description of the supercooled liquid system for T � Tc (see e.g. [43]).
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Figure 1. The MSD (continuous line) and effective exponent (dashed line) for a power-law
spectrum with η = 1/2 and µ = 1, for ε = 10−5 and ε = 10−6. Dotted lines indicate the plateau
of d2 from equation (15), and the plateau of νeff .

Our single saddle model is, on the other hand, a much more simplified approach and
we cannot expect it to reproduce the whole set of MCT results. However, if we believe that
close to Tc the main mechanism driving the dynamical slowing down is the vanishing of the
negative modes available to the system, our model should describe reasonably the behaviour
of the system in this temperature range and should therefore reproduce at least the main MCT
predictions.

5.1. MCT predictions

The MCT predicts the existence of a critical temperature Tc where the relaxation time of the
system diverges. In real systems a real dynamical transition is not observed, however Tc still
represents a well-defined relevant temperature where a slowing down of the dynamics takes
place and a clear crossover to a different dynamical regime arrives.

A general prediction of MCT is the presence, as T approaches Tc from above, of a two-step
relaxation of the relevant dynamical quantities, such as correlation, response functions and the
MSD. More than this, MCT provides detailed predictions about the approach and escape from
the plateau and the final relaxation to the equilibrium asymptotic value. It distinguishes two
dynamical regimes, both of which become critical at the transition: the so-called β-relaxation
regime, which concerns the dynamics around the plateau, and the α-relaxation regime, which
is related to structural relaxation to the ergodic values. Here, we will be concerned with the
β-relaxation, since, as already underlined, our model is a reasonable approximation only until
the plateau is left.

According to MCT, in the β-relaxation regime the correlation function C(t) has the
following scaling form (as usual t 
 1),

C(t) = Cp + ε1/2g(t/tε) tε = ε−1/2a. (25)
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The correlation function has a plateau Cp of length tε , and tε diverges as a power law for
ε → 0. Moreover, MCT predicts a power-law approach to the plateau (early β regime),
that is,

C(t) − Cp ∼ t−a 1 � t � tε (26)

whereas for times larger than tε the correlation function leaves the plateau as (late β regime)

C(t) − Cp ∼ −(t/t0)
b tε < t � τ (27)

where t0 = ε−(a+b)/2ab, and τ is the α-relaxation time.
For the supercooled system studied in [43] the value of the exponent a is a = 0.28.

5.2. Some general requirements

Among the spectral shapes we have considered, only the power case gives a scaling compatible
with MCT. Looking at equations (23) and (24), we conclude that the dynamical scaling of
MCT is reproduced by spectra of the form

ρε(λ) = (εµ + λ)η µη = 1
2 (28)

the predicted dynamical exponent being α = η.
Equation (28) also implies a simple condition on the behaviour of the spectrum in λ = 0:

only spectra that behave as

ρε(0) ∼ ε1/2 (29)

are compatible with MCT. This seems to be quite a strong topological requirement, very easy
to check in specific cases.

Finally, we note that the important point is that the power-law behaviour is obeyed in
the main range of the negative support as Tc is approached. The presence of small correcting
tails around the lower band edge λ = −εµ is not important if they arise in a vanishing
(as ε → 0) region. Indeed, let us imagine that the power-law behaviour (28) holds down to
a certain value λ̄ > −εµ. It is simple to show that the dynamical behaviour predicted by a
power-law spectrum still holds up to timescales t ∼ t̄ with t̄ = ρ ′

ε(λ̄)/2ρε(λ̄), while for greater
times the tail effect starts dominating. Therefore if tε/t̄ = (εµ + λ̄)/εµ vanishes as ε → 0,
the dynamical scaling still holds in a diverging time window. In finite-dimensional systems
one usually gets small tails in the spectrum where localized modes are concentrated. The
previous observation suggests that for a supercooled liquid, where we may expect small tails
to smoothen the spectrum close to the lower band edge, only the extended modes representing
the main negative support are truly relevant for diffusion.

5.3. The p-spin spherical model

To perform a real comparison between MCT and our simplified harmonic model we need
to consider specific cases. In particular, an excellent test would be a system where both
approaches can be fully applied. That is, we need a model where (i) the MCT dynamical
phenomenology is reproduced and (ii) information on the local topology is analytically
available.

The p-spin spherical model (PSM) [49] satisfies both these requirements. Indeed, it
can be shown that the exact dynamical equations for this model have a MCT structure [51],
that is for the PSM the MCT is exact (in contrast to structural glasses where it represents
an approximation). Besides, for this model saddles have been shown analytically to play a
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relevant role [44] and the spectrum of a typical saddle at temperature T = (1 + ε)Tc is exactly
known [52, 53]. Its left tail is

ρε(λ) = (ε + λ)1/2. (30)

Since in the PSM7 d2(t) = 2[1 − C(t)], the MCT scaling forms of equations (25)–(27)
directly apply also to the mean-square displacement. The exact resolution of the dynamical
MCT equations for C(t) can be found in [49] and gives aPSM ∼ 0.4.

On the other hand the behaviour predicted by our harmonic model can be simply inferred
by the results of the previous subsection with µ = 1 and η = 1/2. We get

d2(t, ε) = dp(ε) ∼ +ε1/2h(t/tε) tε = 1

4ε
(31)

and a power-law approach to the plateau:

d2(t, ε) − dp(ε) ∼ −t−1/2. (32)

This behaviour is consistent with a MCT scaling form with an exponent a = 1/2, to be
compared with the exact value aPSM ∼ 0.4. Our conclusion is then that for the PSM the
single saddle model correctly reproduces the general dynamical scaling of the complete MCT
dynamics and the power-law approach to the plateau of the early β regime. The power-law
approach to the plateau can also be seen by setting t � tε in the effective exponent. This gives
νeff(t, ε) = −1/2(1 − t/tε). From this expression we see that for t > tε the model gives no
power-law departure from the plateau (see figure 1)8. This must not be regarded as significant
since the model itself loses validity at large times (for this reason we have only focused on the
early β regime).

Unfortunately, our model does not exactly reproduce the exponent a (or, in other terms, it
does not give the correct form of the scaling function g(x) (25), which is responsible for the
value of the exponent a). Of course, this leaves us partly unsatisfied. However, it is known
that anharmonicities are very strong in the PSM, and it is reasonable that they are already
relevant close to the saddle. If this is the case one should be able to show that taking into
account anharmonicities, for example via a perturbative approach, modifies the exponent in
the correct direction. We are now working in this direction.

6. Conclusions

In this paper we have analysed a simple model of relaxational dynamics around an harmonic
saddle. The physical problem we wanted to address was the description of supercooled liquids
close to the crossover temperature Tc, and our main purpose was to model in a formal way the
connection between topological properties of the potential energy and dynamical behaviour
which is at the basis of the energy landscape approach.

Despite the extreme simplicity of our model and the generality of our assumptions our
results are not trivial. We have obtained a general expression which relates the spectrum of
the saddle and a relevant timescale, and we have outlined the conditions under which such a
timescale diverges giving rise to a two-step dynamics with a well defined plateau at Tc. This
timescale is related to unstable modes, however it is not proportional to the instability index, as
naive expectation would have suggested. Rather, it is related to the behaviour of the spectrum
close to zero: since negative modes tend to disappear as Tc is approached it is the way they
turn into soft modes that determines the long time dynamics.
7 In the PSM we have simply d2(t) = 2[1 − C(t)].
8 In fact, the effective exponent in the PSM shows that even for tε 
 1 there is no extended time region where
νeff = b (figure 6 of [49]), and thus the departure from the plateau is not really power law in the PSM.
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The precise way the system relaxes to the plateau depends on the shape of the saddle
spectrum. We have analysed different spectral shapes and have shown that power-law spectra
give rise to the same dynamical scaling as the one predicted by MCT in the β-regime. For this
kind of spectra then our model seems to be consistent with MCT.

Beside these general qualitative predictions we have also looked at the specific case of the
p-spherical model, where both the spectrum and the dynamics can be analytically computed.
Here the saddle model reproduces the dynamical scaling predicted by the MCT, which is in
this case exact. The p-spin spherical model is interesting because it represents a concrete
model where the two approaches, MCT and single-saddle relaxation, can be independently
performed and ultimately compared. Our analysis indicates that, despite its brutal disregard
of anharmonic contributions, the single saddle model already reproduces the main features of
the complete exact dynamics, namely the dynamical scaling and power-law approach to the
plateau. Our interpretation of this result has been sketched in the introduction: the presence
of the plateau and the slowing down of the dynamics described by the MCT equations are
mainly due to the vanishing of the negative modes close to the transition temperature Tc, and
these effects are already taken into account at the harmonic level in the single saddle model. In
the PSM we have explicitly demonstrated this, however we expect the same to hold whenever
MCT is a good description of the problem, as for structural fragile glasses. To support this
conclusion we should in principle proceed as we did for the PSM: compute the dynamical
quantities using the single saddle model and compare them with the MCT predictions. The
problem is that, in contrast to the p-spin case, the spectrum of a typical saddle is not in general
known for models of glass forming systems. We may expect that numerical simulations or
analytic computations will provide this topological information and our analysis be completed
in the future. On the other hand, there is something important we have already done at this
stage: we have outlined under what general conditions for ρ(λ) our single saddle model is
compatible with the MCT predictions. If the spectra of real glass systems turn out to satisfy
these conditions we will then have very strong support for our arguments.
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Appendix A. Computation of the MSD

Here we show how to derive expression (14) for the MSD. For convenience we omit in the
following the sub-index ε. We recall that the dot indicates a derivative with respect to time,
while the prime indicates a derivative with respect to λ. Let us call N(t) = exp(−tS(λ̂)). By
deriving N(t) with respect to time, the numerator of equation (9) and using the saddle-point
equation (10) we obtain

Ṅ(t) = −2λ̂(t)N(t) (A1)

and thus

N(t) = N(t0) exp

(
−2

∫ t

t0

dt ′ λ̂(t ′)
)

. (A2)

Concerning the denominator of (9), we have to evaluate

tS ′′(λ̂) =
(

ρ ′2

ρ2
− ρ ′′

ρ

)
= t2 − ρ ′′(λ̂)

ρ(λ̂)
(A3)
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where we have used again the saddle-point equation. We define f (t) = ρ(λ̂(t)). Derivatives
of f (t) with respect to time give

ḟ (t) = t ˙̂λf (t) (A4)

1

f (t)
f̈ (t) = ρ ′′(λ̂)

ρ(λ̂)

˙̂λ2 + t ¨̂λ (A5)

1

f (t)
f̈ (t) = ˙̂λ + t ¨̂λ + t2 ˙̂λ2. (A6)

Putting together these relations we have

tS ′′(λ̂) = −1
˙̂λ
. (A7)

So finally equation (9) becomes

ḋ2(t, ε) = d0

√
− ˙̂λ(t) exp

(
−2

∫ t

1
dt ′ λ̂(t ′)

)
t 
 1 (A8)

where we have fixed t0 = 1 for convenience, and d0 = N(1).
We recall that this formula is valid for t 
 1, and on the assumption that the integral

for λ > λ0 is sub-dominant. We can see from (4) that this is actually true. Indeed, since the
saddle-point solution λ̂ is a decreasing function of time, it will surely become smaller than λ0,
for t large enough, therefore∫ t

1
dt ′ λ̂(t ′) � λ0t (A9)

at large times and R(t) is exponentially sub-dominant with respect to (A8).

Appendix B. The plateau of the MSD

We now want to determine the value of the plateau. First, we need to appropriately define
what we mean by plateau. We have seen that ḋ2(t) has a minimum for t ∼ tε . This means
that d2(tε) is as close as possible to the limiting value where d2(t) would go if there were no
negative eigenvalues. Thus, we may define an effective plateau for ε �= 0 (but very small) as

qε = d2(tε). (B1)

In this way, for ε → 0 qε approaches a well-defined value q(Tc) related to relaxation in a
harmonic well. We now show that

qε =
∫ ∞

1/tε

ρ(λ)

λ
+ O [ρ(1/tε)] + O[ρ(−1/tε)] (B2)

and thus

qε → q(Tc) =
∫ ∞

0

ρ(λ)

λ
for ε → 0 (B3)

as expected. To prove (B2) we proceed as follows. We split d2(t) into different parts

d2(t) =
∫ ∞

−∞
dλ ρ(λ)

1 − e−2λt

λ
≡ A + B + C + D + E + F

=
∫ ∞

1/tε

ρ(λ)

λ
dλ −

∫ ∞

1/tε

ρ(λ) e−2λt

λ
dλ +

∫ 1/tε

0
ρ(λ)

1 − e−2λt

λ
dλ

+
∫ −1/tε

−∞

ρ(λ)

λ
dλ −

∫ −1/tε

−∞

ρ(λ) e−λt

λ
dλ +

∫ 0

−1/tε

ρ(λ)
1 − e−2λt

λ
dλ (B4)
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and evaluate the different integrals. By using the saddle-point method for t > tε we find

B ∼ − t

tε
ρ(1/tε) e−2t/tε �⇒ B ∼ ρ(1/tε) for t ∼ tε . (B5)

C is easy:

C � ρ(1/tε)

∫ t/tε

0
dx

1 − e−2x

x
�⇒ C ∼ cρ(1/tε) for t ∼ tε (B6)

where c is a constant prefactor. To evaluate D we note that to ensure the convergence of d2(t)

the function f (λ) = ρ(λ) e−2λt should go to zero for λ → −∞. We can thus estimate D with
the saddle-point method:

D =
∫ −1/tε

−∞
f (λ)

e2λt

λ
dλ ∼ tε

t
f (−1/tε) e−2t/tε

�⇒ D ∼ ρ(−1/tε) for t ∼ tε . (B7)

The integral E is trickier. Once again we use the saddle-point method. The procedure is the
same as the one used for ḋ2(t). Since the factor 1/λ is algebraic it can be discarded in the
evaluation of the maximum so that the maximum of the integrand still occurs for a value λ̂(t)

as given by equation (10). But, by definition, λ̂(tε) = 0. So for t close enough to tε the
real maximum lies outside the integration range and the integral is dominated by the upper
integration limit. Thus we have

E ∼ −tε

−t + ρ ′(−1/tε)/ρ(−1/tε)
e2t/tε ρ(−1/tε) �⇒ E ∼ ρ(−1/tε) for t ∼ tε .

(B8)

Finally, exactly as for C we have

F � ρ(−1/tε)

∫ 0

−t/tε

dx
1 − e−x

x
�⇒ F ∼ ρ(−1/tε) for t ∼ tε . (B9)

Appendix C. The prefactor of equation (14)

We now argue that the prefactor of the square root of equation (14) does not go to zero
exponentially for t → ∞, at least for physical spectra shapes. Let us suppose that for t → ∞
we have

− ˙̂λ(t) � A e−at . (C1)

This implies that

λ̂(t) → λ∞ t → ∞ (C2)

that is, if we define g(λ) = ρ ′(λ)/2ρ(λ),

g(λ) → ∞ λ → λ∞ (C3)

with λ∞ < 0. This is what happens when ρ has a cut in the left tail (semicircle). Condition
(C1) implies (we integrate between t and ∞)

λ̂(t) � λ∞ + A/a e−at . (C4)

Given that g(λ) is a decreasing function of λ, using the saddle-point equation we find

2t = g(λ̂) � g
(
λ∞ + A/a e−at

)
. (C5)
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Calling x ≡ λ∞ + A/a e−at , and for x ∼ λ∞, this relation gives

g(x) � −1

a
log(x − λ∞). (C6)

If we now recall that g(x) = ρ ′(x)/ρ(x), and integrate between λ and 0 and take the limit
λ → λ∞, we find

ρ(λ∞) > 0. (C7)

Thus, if equation (C1) holds, the spectrum must be nonzero at the left cut (the converse is not
true). Therefore, if we discard this unphysical case, we are sure that for t → ∞ the Gaussian
fluctuations do not go to zero exponentially. It is possible that for spectra of the kind we
exclude, the exponential factor increases faster than a simple exponential and therefore still
kills the prefactor contribution, but we have not been able to prove under what conditions this
happens.
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